A major purpose ot the Iecnni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1



LA-UR -85-523
Conp- 950266 -

Los Alemos Nations! Laborstory s operated by the Univershy of California for !he Ur wd Siates Department of Energy under contract W.74058-ENG-3

TITLE:  OPTIMIZING COMPUTATIONAL EFFICIENCY AND USER CONVENIENCE
IN PLASMA SIMULATION CODES

LA-UR--85-523

AUTHOR(S):  Christopher W. Barnes, X-1
ristopher arnes DE85 007661

SUBMITTED TO: To be published in the proceedings of the Second International
School for Space Simulations, Honolulu, Hawaii, February 3-16, 1985

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Governraent  Neither the United States Government nor any agency thoreof, nor any of their ,'

employees, makes any warranly, express or implied, or assumes any legal liability or r=sponsi- ¢-0,

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or d * o
process disclosed, or reprusents that its use would not infringe privately owned rights. Refer- ((
ence herein to any specific commarcial product, process, or service by trace name, trademark,

manufacturer, or othervise does not necessarily constitute or imply {ts endorsernent, recom-

mendation, or favoring by the United ‘itates Government or any ajgency thereof, The views

and opinions of authors expressed hcicin do not necesssrily stat: or roflect those of the

United States Government or any agency thereof.

8y acceptance of this srucie, Ihe publisher recognizes that the U8 Government retiing 8 10RCKEIUSIVE. 1OYRIty-1ree icense 1o publish of reproguce
the publisheg form of this cONtrIBULON, Of tu aliow ethers to do 80. for U.B QGovernment urposes

Tne Los Alamos Nauons! Leboratory requests thal tha publishar identity this article as work performed under the auspices of the U 8 Departmentof Energy

Los Alamos i

NeTIGE

FOAM NO 834 A4

1 no b 1ONS OF /HIS REPORT ARE ILLELIGL, A OF T, DOCUNGAT 16 WLANTED
..:',?fmg“"" reproduced from the hest e

dm m . aa aa


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


OPTIMIZING COMPUTATIONAL EFFICIENCY AND USER CON-
VENIENCE IN PLASMA SIMULATION CODES

Christopher W, Barnes
Los Alamos National Laboratory
Los Alamos. New Mexico

ABSTRACT. It is usually important to write plasma simulation codes in such a
way that thev execute efficiently and are convenient to use. 1 discuss here practical
techniques to achieve this goal. Numerical algorithms must be well formulated
and advantage taken of machine architecture in casting the algorithm into a high
level language such as Fortran. The advantages of writing critical routines in
Assembler are discussed. For large simulation codes, disks must often be used as a
temporary store for working data. Efficient methods for doing this are presented.
Codes must not only be well organized for ease of implementation and maintenance,
but also for ease of use. \Ways are suggested for packaging codes such that setup.
batch production, restarting and diagnostic postprocessing is facilitated. Particular
emphasis is placed on graphics postprocessors, since they must be used in real time
with graphics terminals as well as with hardcopy devices.



1. Introduction

The purpose of this tutorial lecture is to present what experiencé has shown to be
good programming practice in the reelization of plasma simulation codes for use
on modern computers. | assume that you are well versed in a language such as
fortran. and have used large computer installations in your evervday work. You
ma\ not vet have written and used 2 program that consists of many thousands
ol lines of source <o0de and that consumes many hours of computer time. The
iplementation of non-trivial programs such as this requires careful planning and
mindiulness of the physical nature of the computer system to be used. if efficiency
and convenicnce are important. Thesc considerations are likely to be important in
a large code since the programming manpower needed is only justified by a long
production life of the code.

It seems to be true that plasma simulation codes are never written once, and
then used forever without modification. Instead, there is always new physics to
include. new numerical algorithms to try or a change needed in the diagnostics
package. You should assume that your new code will never be 'finished’ and there-
fore should make ease of maintenance a primary consideration in its design.

Can we now identify the principal characteristics of plasma simulation codes
that are relevant to optimizing efficiency and convenience? The most prominent
features are the need for large amounts of computing time and the large amount of
data used. The data base can exceed the storage capacity of the machine’s central
menory and might therefore need to be stored on disk and brought into memory
as needed. The amount of computation done on a unit of data each time it is
brought in from disk could be an issue. if it is desired to overlap disk transfers
with computation. Particle codes are the worst oflenders here. The particle move
time can be as little as two microseconds on a CRAY-1 per timiestep while the disk
read, write time is several times this per particle. Simulation codes calculute the

_evglution of & plasma over titae in a serics of small timesteps. cach step typically
consisting of a particle or fluid element advance followed by an updating of the
selfconsistent clectric and magnetic fields. As the calculation proceeds, diagnostic
data is produced in vast quantities and is either saved in raw or partly reduced
form or is displayed or plotted directly. The diagnostic portions of a code can
represent as much as 80 percent of the total number of sourcecode lines in the
program. Fortunateley they usually can be made to use only a small part of the
total compute time used in a run, They thererore need not be highly optimized.

Since these codes calculate the evolution of a plasma over time, it is desirable
1o be able to checkpoint the data occasionally so that a probletn can be restarted
without having to start from scratch. Often, a problem will be executed in several
runs because of time constraints or to allow anal!ysis of the problem results part
way through. The ability to save the working data at a particular timestep and in a
suSseQuom run restart from it is therefore considered essential in plasma simulation
codcs.



2. Optimization

In this section, I will discuss various ways to ensure that the code runs as efliciently
as possible. without an excessive amount of programimning effort. We will find that a
rough knowledge of the computer architecture heing used and some understanding
of hov. the compiler makes use of that architectrue, will allow us to make substantial
increases to execution efficiency.

2.1 A Vector Machine

The CRAY series of computers is now in wide spread use and is a prime example
of what is known as a vector or pipeline machine. It has the ability to eflectively
perform an opcration on a vector or array of data alinost in parallel. Once the
operation is initiated and after a short latency, the results appear one per machine
cycle. The real power of this method lies in the fact that the overhead for index
and address generation for the arithmetic or logical operation to he performed need
only be done once, for the whole vector.

All vector machines also have the ability to do scalar operations. since some
codu is inherently unvectorizable. It is easy to show that vectorization can provide
a factor of five speed increase over code executed only in the machine's scalar
units. 'The objective thei:. when v riting in Fortran for instance, is to convince the
conmpiler to vectorize as much of the code as possible to achieve maximum specd.
Even so, it is sometimes worth hand coding small portions of the program.

The maximum vecior length allowable on the CRAY series of computers is 64
operands. For vectors longer than this, the compiler must break them into a series
of vectors of length 64 or less. It is true that the hardware performs best when the
vector length approaches 64. The breakeven point against scalar speed is a vector
length of about 5.

A constraint against use of the vector units is that vector operands must be
stored in memory with a constant ’stride’, or spacing in address. This property
mukes writing of particle movers especially difficult, since the cell locations for a
vector of particles are random, certainly not of constant ’stride’. It is worth noting
that CRAY's upcoming X-MP48 will have the capability of doing 'scatter/gather’
vector memory references, ie, non-constant stride, Bank conflicts will still degrade
performance, however.

Memory is arranged in banks, or physical units such that as one steps through
sequential memory addresses, a different bank is accessed each time until the num-
ber of banks has been cycled through, typically 16. Since the memory cycle time
is much greater than a machine cycle, rapid hits to the same bank can slow access
significantly. One should therefore avoid vector operations with strides which con-
tain factors of 8 or 16 (or some similar power of two, depending on the number of
banks in that particular machine).



2 Fortran Optimization

Optimization of Fortran codes is best done experimentally, since one can not always
predict how the compiler will treat a given style of coding. Find a timing routine
which reads a microsecond clock, or preferably a machine cycle clock. Then two
calls to this routine will measure the time spent in the piece of code bracketing
the two calls. The timing eflect of coding changes can easily be seen using this
method.

In scalar code. or code to be executed on a non-vector machine, anyvthing
can affect the timing. DO loops are a basic construct in Fortran. In any code
unit containing DO loops, an innermost loop can be found where the majority of
the time is spent. Unnecessary expressions should be kept out of the inner loop
(sometimes the compiler will do this for yov). Index calculations should be kept
a simple as possible with the idea that each time through the loop, there will be
as little calulation needed as possible. Sometimes non-changing portions of the
index can be calculated outside the inner loop. Multi-dimensional arrays should
be avoided. It is usually best to explicitely compute the mapping of a multi-
dimensional index into a one-dimenc<ional array. Use can be made of the fact that
in Fortran, the first listed index is the fastest varying one, that is, is the contiguous
one in storage.

In Fortran, vectorization is achieved not by special vector notation. but by
finding suitabl: DO loops which lend themselves ‘o vectorization. The array indices
must not improperly overlap and the flow of the loop must not be interrupted.
This means that there can be no IF tests within the loop. In a particle moving
routine. the tests to see when a particle crosses a bovndary will apparently not
vectorize in Fortran, and should not be put in A loop with other operations which
can. :nterestingly. the machine instruction which performs the comparison has a
vectes formn. The inclusion of a branch as a part of the IF construct makes it
non-vectorizable.

When there are nested DO loops which are vectorizable. it is sometimes of
advantage 0 reverse their order, althecugh this is not always logically possible. 1
recently did this in a small FEL code in which the inner loop had a span of around
20 and the outer a span of over 200. The speedup under these conditions was
significant although as the span of 20 was increased towards 64. the difference
became negligible as one might expect.

] learned an interesting lesson about libraries in working on this code. At
least half the time in th. codc was spent in calculating sine and cosine pairs (of
the same argument). This was done ucing a call to a vectorized sine and then
a vectorized cosine routine. 1 took the trouble to look at the CAL source code
for these routines. | discovered that the same routine was called for both sine
and cosine, and that because the vector arguments could be in any octant, that
the routine always calculated both sine and cosine, and threw away the one not
needed. 1 was able Lo modify the routine o that it returned both sine and cosine
with one call, eliminating the need for the second call. Sotnecne had thought of this
lefore, of course. 1 found an entry point in the library to a COSSIN routine which
did what ] just described. Except it made calls to scalar routine which would have
been far slower. Appaiently the person who wrote and maintained the library had
time only to make the COSSIN function look vectorizable to the calling routine,
but not to actually provide the code needed. The lesson is apparently that library
writers are human too.



2.3 Why Hand Code?

Some people are born hackers, and have written in Asseimnbler for as long as they
can remember. Others need some persuasion to learn and use assemblyv language
in their codes, The truth is that it is often justified in codes such as particle codes.
where nost of the time is taken up by a few hundred lines of Fortran. the hand
coding of which could achieve a speedup of a factor of two. Vector code is casy
10 hand code bhecause you don’t have 1o worry about the timing of the scalar part
(indexing. counting. etc). In my view. vector code is the only kind I would consider
worth the efort of hand coding.

The Cray machines have eight vector registers and a number of functiona’
units each of which performs a speciailized group of operations. They have names
like “Floating Point Add Unit . "Floating Point Multiply Unit™, Shift Unit™ and
“Log.cal Function Unit™. Memory references can be thought of as being performed
by a special functional unit. In rough terms, the rules are that you can have as
many functional units going at once as you want, so long as the rules of register
conflict are observed. It is possible to keep four or five functional units going
simultaneously in a hand coded particle mover.

3. Convenience

When a new code is being conceived and written, or when an old code is being
impruoved. the rush to get the job done often allows us to do a poor job of planning.
commmenting and documenting the code. The result is a code that isinconvenient to
run, particularly by the code’s non-autors. Code maintenance may alss be nearly
impossible, even by the author. We quickly forget what we intended when we
wrote the code, and if there are no comments imhedded in the code. we may be
reduced to analyzing the Fortran to try to figure out what it does. lf the code is
well structured, this may not be difficuit. f it is a mass of GO TO staiements,
it could be impossible. I wrote a data handling routine once for a particle code
that had such convoluted logic that 1 could never understand the algorithm well
enough to follow the logic of the code | had written. At one point, it passed all the
tests, so | knew it worked. so | stopped working on it knewing that if it ever broke
1 wouldn’t be able tn fix it. By the time I finished the job, 1 knew a lot about
structured programming and documentation.

The following paragraphs set out my recommendations on hiow to lay out and
write a code for ease of use and maintenance and how to organize it so that it can
be used conveniently without need for an intimate knowledge of how it works.

3.1 Overall Design

I always design my codes so that the graphical output is generated in a postproces-
so1. The main code saves diagnostic data periodically in as raw a form as possible.
Decisions as to what data is to be taken and at what intervals and with what
completeness and precision are made when the physics code is set up and run. The
postprocessor reduces and processes the date and hen plots it graphically. Many
decisions, particularly about graphics options can be made at postprocess time.
Since the postprocessor can be rerun cheaply by comparison to the original physics
run, lost fiche ore a mistyped graphical parameter is less likely to cause grief. The



other advantage of keeping the graphics routines in the postprocessor is that they
cannot invade and overrun the physics code and thus destroy its legibility. The is
no temptation to put graphics calls inside a particle mover, for instance.

The code is designed 1o be restartable. At predctermined intervals, a copy of
all the working data is written to a set of files. with suitable names. at the cnd of
the run. thesce files. along with the diagnostic files are written to permanent inass
store. If it is desired 1o continue this run for say another hour. the data files are
made available so that the code will not start from scratch. but resume where it
left off. In addition to providing convenience of running the code. this design helps
bullet proof the code against machine crashes.

The code is set up to look for data or commands to be entered from the
keyboard during operation. Once each timestep, it looks for prearranged signals
from the keyboard. It is therefore possible to stop the run, force a data dump, ask
for data to be printed at the terminal. etc as the code runs. In principle, there is
no litnit to the degree of interactivity one could incorporate, It should be noted
that the exact same code can be run in a batch subsystem without any need to
interact with a terminal.

Parameter initialization is done using Namelist variables. All parameters are
initialized to default values inside the code and only those that differ from the
default values for a given run need be mentioned in the input deck. The input deck
is either a file or it can be typed in at run time from the terminal if need be.

3.2 Postprocessor

The postprocessor is designed tc produce graphical output from the data saved in
the running of the physics code. The output carn then be sent to a plotter of some
kind or viewed directly on a graphics terminal. A more sophisticated postprocessor
might allow one to design plots on the fly. to better examine some feature in the
data for instance.

3.3 Internal Structure of the Code

Internally, the code should be organized into many, logically independcnt subrou-
tines. No code block should be more than a few hundred lines in length, excluding
comments. which should double its length. Liberal use of common blocks makes
argument passing almost unnecessary. The idea is to immake the code as easy to
undcrstand as possible.

In hand coded particle movers, 1 like to use four or five scparate subroutines
for the CAL mover, each to perform a logically separate part of the move. With
each set of calls, a vector of 64 particles is moved. Within a Fortran bookkeeping
subroutine, the sequence might be as follows: A CAL routine is called which un-
packs the particles and calculates cell numbers and weights. Another CAL routine
calculates the field values for the 64 particles. A third CAL routine advances the
particles. A fourth CAL routine recalculates the cell numbers and weights and
repacks the particles. Finally, the weights are used to accumulate the charge and
current arrays in the last CAL routine. This is the basic cycle. Between these calls
to the CAL mover, one can insert calls to Fortran diagnostic routines, particle
injectors and routines to handle unusual boundary conditions. Thus it is possible
to tightly intermix CAL and Foriran routines cleanly. Even at the level of moving



only 64 particles, the overhead of all these subroutine calls is small enough to be
ignored.

In the previous section, 1 mentioned that particles can be packed and unpacked.
By that 1 meant that it is often possible to compact the particle data by a factor
of two in order to save space in memery or to reduce the time needed to transfer
the data to and from disk. This is a common practice in codes such as this.



